On the Influence of Spatial Information for Hyper-spectral Satellite Imaging Characterization
نویسندگان
چکیده
Land-use classification for hyper-spectral satellite images requires a previous step of pixel characterization. In the easiest case, each pixel is characterized by its spectral curve. The improvement of the spectral and spatial resolution in hyper-spectral sensors has led to very large data sets. Some researches have focused on better classifiers that can handle big amounts of data. Others have faced the problem of band selection to reduce the dimensionality of the feature space. However, thanks to the improvement in the spatial resolution of the sensors, spatial information may also provide new features for hyper-spectral satellite data. Here, an study on the influence of spectral-spatial features combined with an unsupervised band selection method is presented. The results show that it is possible to reduce very significantly the number of spectral bands required while having an adequate description of the spectral-spatial characteristics of the image for pixel classification tasks.
منابع مشابه
Wavelet Packets for multi- and hyper-spectral imagery
State of the art dimension reduction and classification schemes in multiand hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملMicro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation
Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...
متن کامل32- Band Hyper-spectral Image Compression using Embedded Zero Tree Wavelet
Hyper-spectral Image is a three dimensional array containing spatial (image) information on x & y axis and spectral information on z axis. It is high resolution imagery. Hyper-spectral image is a dynamic & powerful method to visualize data in terms of spatial & spectral features. It consumes a huge amount of storage. So due to large memory requirements, Hyperspectral images demand efficient com...
متن کاملMapping spatial variability of soil salinity in a coastal area located in an arid environment using geostatistical and correlation methods based on the satellite data
Saline lakes can increase the soil and water salinity of the coastal areas. The main aim of this study is to distinguish the characteristics of the spectral reflectance of saline soil, analyze the statistical relationship between soil EC and characteristics of the spectral reflectance of saline soil, and to map soil salinity east of the Maharloo Lake. The correlation between field measurements ...
متن کامل